Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home>Press> What happens when you explode a chemical bond?Attosecond laser technique yields movies of chemical bond dissociation

UC Berkeley scientists are probing the fleeting steps in rapid photochemical reactions with some of the shortest laser pulses possible today.In this case,a femtosecond pulse of visible light (green) triggers the breakup of iodine monobromide molecules (center),while attosecond XUV laser pulses (blue) take snapshots of the molecules.This allows them to make a movie of the evolution of electronic states (yellow lights around molecules) before the molecules blow apart.CREDITYuki Kobayashi,UC Berkeley
UC Berkeley scientists are probing the fleeting steps in rapid photochemical reactions with some of the shortest laser pulses possible today.In this case,a femtosecond pulse of visible light (green) triggers the breakup of iodine monobromide molecules (center),while attosecond XUV laser pulses (blue) take snapshots of the molecules.This allows them to make a movie of the evolution of electronic states (yellow lights around molecules) before the molecules blow apart.CREDITYuki Kobayashi,UC Berkeley

Abstract:
On bright summer days,the sunlight all around us is breaking bad by breaking bonds.Chemical bonds.

What happens when you explode a chemical bond?Attosecond laser technique yields movies of chemical bond dissociation

Berkeley,CA | Posted on July 12th,2019

Ultraviolet light shatters the links between atoms in the DNA of our skin cells,potentially causing cancer.UV light also breaks oxygen bonds,eventually creating ozone,and cleaves hydrogen off other molecules to leave behind free radicals that can damage tissue.

University of California,Berkeley,chemists using some of the shortest laser pulses available -- one quintillionth of a second -- have now been able to resolve the step-by-step process leading to the exploding of a chemical bond,essentially making a movie of the event.They can follow electrons indecisively bouncing around in various states in the molecule before the bond breaks,and the atoms go their separate ways.

The technique,reported last week in the journal Science,will help chemists understand and potentially manipulate chemical reactions stimulated by light,so-called photochemical reactions.Chemists and biologists,in particular,are interested in understanding how large molecules manage to absorb light energy without breaking any bonds,as happens when molecules in the eye absorb light,giving us vision,or molecules in plants absorb light for photosynthesis.

"Think about a molecule,rhodopsin,in the eye," said first author Yuki Kobayashi,a UC Berkeley doctoral student."When light hits the retina,rhodopsin absorbs the visible light,and we can see things because rhodopsin's bond's conformation changes."

In fact,when the light energy is absorbed,a bond in rhodopsin twists,instead of breaks,triggering other reactions that result in the perception of light.The technique Kobayashi and his UC Berkeley colleagues,professors Stephen Leone and Daniel Neumark,developed could be used to study in detail how this light absorption leads to twisting after the molecule passes through an excited state called an avoided crossing or conical intersection.

To prevent the breaking of a bond in DNA,"you want to redirect the energy from dissociation to just being vibrationally hot.For rhodopsin,you want to redirect the energy from vibrating to a cis-trans isomerization,a twist," Kobayashi said."These redirections of chemical reactions are happening ubiquitously around us,but we have not seen the actual moment of them before."

Fast laser pulses

Attosecond lasers -- an attosecond is a billionth of a billionth of a second -- have been around for about a decade and are used by scientists to probe very fast reactions.Since most chemical reactions occur rapidly,these fast-pulse lasers are key to "seeing" how the electrons that form the chemical bond behave when the bond breaks and/or reforms.

Leone,a professor of chemistry and of physics,is an experimentalist who also uses theoretical tools and is a pioneer in using attosecond lasers to probe chemical reactions.He has six of these X-ray and extreme ultraviolet (collectively,XUV) lasers in his UC Berkeley laboratory.

Working with one of the simplest of molecules,iodine monobromide (IBr) -- which is one iodine atom linked to one bromine atom -- the UC Berkeley team hit the molecules with an 8 femtosecond pulse of visible light to excite one of their outermost electrons,then probed them with attosecond laser pulses.

Pulsing the attosecond XUV laser at timed intervals of 1.5 femtosecond (a femtosecond is 1,000 attoseconds),much like using a strobe light,the researchers could detect the steps leading to the breakup of the molecules.The high-energy XUV laser was able to explore the excited energy states relative to the molecule's inner electrons,which normally do not participate in chemical reactions.

"You are kind of making a movie of the pathways of the electron when it approaches the crossing and the probability of it going along one path or along another," Leone said."These tools we are developing allow you to look at solids,gases and liquids,but you need the shorter time scales (provided by an attosecond laser).Otherwise,you only see the beginning and the end,and you don't know what else happened in between."

The experiment showed clearly that the outer electrons of IBr,once excited,suddenly see a variety of states or places they could be and explore many of them before deciding which path to take.In this simple molecule,however,all paths lead to the electron settling on either iodine or bromine and the two atoms flying apart.

In larger molecules,which the team hopes soon to explore,excited electrons would have more choices,some where the energy goes into a twist,like with rhodopsin,or into molecular vibration without the molecules breaking apart.

"In biology,it turns out that evolution has selected things that are extremely effective at absorbing the energy and not breaking a bond," Leone said."When something goes wrong in your chemistry is when you see diseases cropping up."

###

Other co-authors of the paper were Kristina Chang of UC Berkeley and Tao Zeng of Carleton University in Ottawa,Canada.Leone,the John R.Thomas Endowed Chair in Physical Chemistry,and Neumark,a UC Berkeley professor of chemistry,are also faculty scientists at Lawrence Berkeley National Laboratory.

####

For more information,please clickhere

Contacts:
Robert Sanders

510-643-6998

Copyright © University of California,Berkeley

If you have a comment,please Contactus.

Issuers of news releases,not 7th vwin徳赢官网Wave,Inc.or Nanotechnology Now,are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Unconventional phenomena triggered by acoustic vwin徳赢官网waves in 2D materials: Opening a new way to manipulate valley transport by acoustic methodsJuly 23rd,2019

Tiny vibration-powered robots are the size of the world's smallest antJuly 19th,2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physicsJuly 19th,2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories.July 19th,2019

Chemistry

Caught in the act: Images capture molecular motions in real timeJuly 15th,2019

Cancer

Imprinted spheres fight breast cancer: Inhibition of HER2 on tumor cells by molecularly imprinted nanoparticlesJuly 9th,2019

Imprinted spheres fight breast cancer: Inhibition of HER2 on tumor cells by molecularly imprinted nanoparticlesJuly 3rd,2019

Researchers reach milestone in use of nanoparticles to kill cancer with heatJune 28th,2019

3D body mapping could identify,treat organs,cells damaged from medical conditionsJune 27th,2019

Govt.-Legislation/Regulation/Funding/Policy

Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinnerJuly 19th,2019

Tiny vibration-powered robots are the size of the world's smallest antJuly 19th,2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physicsJuly 19th,2019

The interlayers help perovskite crystallisation for high-performance light-emitting diodes: Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodesJuly 19th,2019

Possible Futures

Unconventional phenomena triggered by acoustic vwin徳赢官网waves in 2D materials: Opening a new way to manipulate valley transport by acoustic methodsJuly 23rd,2019

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4,with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronicsJuly 19th,2019

Tiny vibration-powered robots are the size of the world's smallest antJuly 19th,2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories.July 19th,2019

Discoveries

Unconventional phenomena triggered by acoustic vwin徳赢官网waves in 2D materials: Opening a new way to manipulate valley transport by acoustic methodsJuly 23rd,2019

Tiny vibration-powered robots are the size of the world's smallest antJuly 19th,2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physicsJuly 19th,2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories.July 19th,2019

Announcements

Unconventional phenomena triggered by acoustic vwin徳赢官网waves in 2D materials: Opening a new way to manipulate valley transport by acoustic methodsJuly 23rd,2019

Tiny vibration-powered robots are the size of the world's smallest antJuly 19th,2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physicsJuly 19th,2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories.July 19th,2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Unconventional phenomena triggered by acoustic vwin徳赢官网waves in 2D materials: Opening a new way to manipulate valley transport by acoustic methodsJuly 23rd,2019

Tiny vibration-powered robots are the size of the world's smallest antJuly 19th,2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physicsJuly 19th,2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories.July 19th,2019

Military

Caught in the act: Images capture molecular motions in real timeJuly 15th,2019

Sheaths drive powerful new artificial musclesJuly 11th,2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50%June 19th,2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and offJune 14th,2019

Photonics/Optics/Lasers

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories.July 19th,2019

Strange warping geometry helps to push scientific boundariesJuly 12th,2019

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devicesJuly 5th,2019

'Tsunami' on a silicon chip: a world first for light vwin徳赢官网waves: Sydney-Singapore team manipulates soliton photonic waves on a silicon chipJuly 5th,2019

NanoNews-Digest
The latest news from around the world,FREE



Premium Products
NanoNews-Custom
Only the news you want to read!
Learn More
NanoStrategies
Full-service,expert consulting
Learn More